
Chapter 1 Graph Theory 

1-1 Representations of Graphs 

Graph, G=(V,E): It consists of the set V of vertices and the set E of edges. If each 

edge has its direction, the graph is called the directed graph (digraph). If each edge is 

undirected, the graph is called the undirected graph (multigraph). 

Eg. An undirected graph (left) and a directed graph (right). 

 

 

Path: A set of edges of which each edge connects to the initial vertex of the next edge 

is called a path. 

Length of a path: The number of the edges in one path. 

Eg. For the left graph, the path from a to d through b, c is 3, the 

path from g to b via a is 2. 

 

 

 

 

Weight, w(v,x): The weighting value of edge from vertex v to vertex x. 

Weighted graph: A graph’s each edge has a weight. 

Eg. A weighted graph (left) and an un-weighted graph (right). 

 

Weighted length of a path: The sum of weights of the edges in one path. 

Eg. For the left graph, the weighted length from a to c 

via b is 2+3=5. The weighted length from a to b via d is 

2+11=13. 

 



Adjacent matrix: A=[Aij], where Aij is the number of paths from vertex i to vertex j. 

 

Eg. For the left graph, the corresponding adjacent matrix is 

. 

Eg. For the left digraph, the 

corresponding adjacent matrix is 
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Multiplicity: The number of the edges from vertex v to vertex u. 

Eg.  The adjacent matrix of the left graph is . The 

multiplicity of (a,b) is 2 and the multiplicity of (b,c) is 3. 
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Simple graph: The graph whose entry of the adjacent matrix is 0 or 1 is called a 

simple graph. 

Eg. The graph G* is a simple graph, 

but G is not a simple graph. The 

corresponding adjacent matrix of G 

is M=  and the 

corresponding adjacent matrix of G* is M*= . 
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Theorem If A is the adjacent matrix of a simple graph, the ijth entry of An is 

equal to the number of paths of length n from vi to vj. And the diagonal entries of 

A2 give the number of the edges on the vertices. 

 Eg. For the left simple graph, the adjacent matrix A is 

,  

A13=2 means that there are 2 paths of length 2 from a to c: a→b→c and a→d→c. 

The diagonal entries of A2 give the number of the edges on the vertices. For 

example, [A2]33=3 means that there are 3 edges incident on c. 

 

Eg. For the left graph, the adjacent matrix A is 
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means that there are 3 paths of length 2 from vertex 1 

to vertex 3: 1→2→3, 1→4→3 (straight line), and 

1→4→3 (curve). 

Note: This graph is not a simple graph, so that there are 3 edges incident on 

vertices 3, 4 but [A2]33=[A2]44=5. 

 

Incident matrix: A matrix M representing a graph of which row is labeled with the 

vertices and column is labeled with the edges. M=[Mij] where 
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Eg.  The incident matrix of the left graph is 

. 

















111

001

010

0

1

1

3

2

1

4321

v

v

v

eeee

 



Eg. For the left graph, (a) find the adjacent 

matrix A, and (b) find the incident matrix M. 

 

 

 

 

(Sol.) (a)  (b)  
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Subgraph: G=(V’,E’) is a subgraph of G=(V,E) if (a) V’ V and E’E. (b) e’E’, 

if e’ is incident on v’ and w’, then v’, w’

 

V’. 

Eg. In the following figure, G1 is a subgraph of G. G2 is a partial graph of G but 

it is not a subgraph of G because de  does not exist. 

 
 

Component: The subgraph G’ of G consisting of all edges and vertices in G that are 

contained in some path beginning at v is called the component of G containing v. 

Complement: G1=(V1,E1) is a subgraph of G=(V,E). G2=(V2,E2) is the complement 

of G1 if E2=E- E1 and V2 contains only the vertices of the edges in E2. 

Eg. For the left G and G1, what is the complement of 

G1? 

(Sol.)  

 



Hypercube (n-cube): 

  

 



1-2 Connected Graphs and Cycles 

Connected graph: Any vertices v and w in the graph, there exists at least one path 

from v to w. 

Strongly connected graph: Any vertices v and w in the digraph, there exists at least 

one path from v to w and there exists at least one another path from w to v. 

 

Eg. (a) Find the corresponding simple 

graph of G. 

(b) Is it strongly connected? 

 

 

 

 

 

(Sol.) (a) 

(b) No, ∵ v1 can achieve the other vertices 

but the other vertices can not achieved v1, ∴ 

it is not strongly connected. 

 

 

 

 

 

Eg. Which is the strongly connected graph in the following figures? 

 

(Sol.) ∵ v2 can achieve v1 directly and v1 can achieve v2 via v3, ∴ Figure (a) is 

strongly connected. 

∵ v2 can not achieve v1 and v3, ∴ Figure (b) is not strongly connected.. 

 

Theorem Let G be a graph without isolated point, then G is strongly connected if 

and only if there exists a circuit comprising all directed edges at least one time. 

Theorem n2, there is a strongly connected graph that has n edges. 



Theorem n2, an n-vertex strongly connected graph has at least n edges. 
Degree, δ(v) (or deg(v), or dv): The number of the edges incident on the vertex. 

Indegree, dv
in: The number of the edges entering a certain vertex. 

Outdegree, dv
out: The numbers of the edges flowing out from a certain vertex. 

Eg. In the following figure, deg(A)=2, deg(B)=3, deg(C)=3, deg(D)=3 in Graph (a) 

and deg(D)=2 in Graph (b). 

 
Theorem For an undirected graph G[V,E], where |V|=n and |E|=e. We have 

=2e. 


n

i
iv

1

)(

Eg. For the left directed graph, |V|=2 and |E|=4. We have 
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Theorem For a directed graph G[V,E], where |V|=n and |E|=m. 
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Eg. For the left directed graph, |V|=3 and |E|=9. We have 
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Simple path: A path has no repeatedly-visited edge. 

Elementary path: A path has no repeatedly-visited vertex. 

Cycle (or Circuit): A finite path whose initial vertex and terminal are the same is 

called a cycle or circuit. 

Simple circuit: A circuit has no repeated edge. 

Simple cycle: A circuit has no repeated vertex. 

Loop: A cycle of length=1. 



Eg. A path: aα4a is a loop. 

Eg. A path: aα1bα2a is a simple circuit and a 

simple cycle. Another path: bα2aα1b is also a 

simple circuit and a simple cycle. 

Eg. A path: a 4 a 1 b 2 a is a simple circuit but 

not a simple cycle. 

 

Hamiltonian cycle (Traveling salesman problem): A cycle in Graph G that contains 

each vertex in G exactly once, except for the starting and ending vertex that appears 

twice. 

Theorem An undirected simple graph with n vertices (n ≥ 3) is Hamiltonian if 

every vertex has degree n / 2 or greater. 

Eg. Two examples of graphs with Hamiltonian cycles. 

: a→b→c→d→e→f→g→a   : a→b→c→d→e→a 

 

Eg. Four examples of graphs with no Hamiltonian cycles. 

 

 

Eg. Find a Hamiltonian cycle in the left graph. 

(Sol.) d→a→e→b→c→h→g→f→j→i→d 

 

 

 

 

Eg. Find a Hamiltonian cycle in the left graph. 

(Sol.) a→b→c→j→i→m→k→d→e→f→l→g→h→a 

 

http://faculty.pccu.edu.tw/~meng/Hamiltonian1.avi�
http://faculty.pccu.edu.tw/~meng/Hamiltonian2.avi�
http://faculty.pccu.edu.tw/~meng/Hamiltonian3.avi�


Eg. Find a Hamiltonian cycle in the left graph. 

(Sol.) e→d→a→b→c→e 

 

 

 

 

Eg. Solve the traveling salesman problem (Find a 

Hamiltonian cycle) for the left graph. 

(Sol.) e→b→a→c→d→e 

 

 

 

 

Eg. Show that the graph has no 

Hamiltonian cycle. 

(Proof) If b is not initial or terminal 

vertex, b must be passed twice at least. If 

b is initial or terminal vertex, b must be 

passed three times at least. 

 

 

 

 Eg. Find a Hamiltonian cycle in the left graph. 

(Sol.) a→b→c→d→e→f→n→p→m→l→k→j→o 

→i→h→g→a 

 

 

 

 

 

 

The bridge of Konigsberg: 

In 1736, Euler presented a problem: There 

are 2 islands and 7 bridges as shown in 

figure. How does a salesman pass each 

bridge once if he wanted to visit 4 

customers lived in A, B, C, and D. 

 

http://faculty.pccu.edu.tw/~meng/Hamiltonian5.avi�
http://faculty.pccu.edu.tw/~meng/Hamiltonian6.avi�
http://faculty.pccu.edu.tw/~meng/Hamiltonian7.avi�


The problem can be simplified into a graph model as shown in 

the left graph. And the question is: “Can we draw it without 

interruption?” The answer is “No”. That is, there is no Euler 

cycle in this graph. But the graph has a Hamiltonian cycle. A 

salesman can visit 4 customers as the following path: 

A→B→D→C→A. 

 

Euler trail: A simple path passing each edge once in the graph. 

Euler cycle (or Euler circuit): A simple path, with the same initial vertex and 

terminal, passes each edge in G exactly once. And we can draw an Euler cycle 

without interruption. 

 

Theorem For a directed graph without isolated point, it has an Euler cycle if and 

only if the graph is connected and dv
in =dv

out. 

 

Eg. Graph (a) has an Euler cycle because dv
in

 

=dv
out=1 for each vertex. But Graph (b) has an 

no Euler cycle because dv
in=2≠0=dv

out for 

vertex u1 and dv
in=0≠2=dv

out for vertex u2. 

 

 

Theorem If an undirected graph has an Euler cycle, then it is connected and 

every vertex has even degree. 

Eg. Left Graph (a) has an Euler cycle because 

the degree is 4 for each vertex. But Graph (b) 

has not an Euler cycle because the degree is 3 

for each vertex. 

 

 

 

 

Eg. Left Graph (a) has not an Euler 

cycle because the degrees of two 

vertices are 3. Graph (b) has an 

Euler cycle because the degree is 2 

for each vertex. 

 

 



Eg. Show that no solution for the problem: The bridge of 

Konigsberg. 

(Proof) The left graph shows that the degree of each vertex is 

odd. There is no Euler cycle. 

 

 

 

Eg. Find an Euler cycle in the left graph. 

(Sol.) v6→v4→v7→v5→v1→v3→v4 

 

4 

 

→v1→v2→v5→v4→v2→v3→v6

Or, v1→v2→v5→v1→v3→v2→v

→v5→v7→v4→v3→v6→v4→v1

 

 

 

 

 

Eg. Find an Euler cycle in the left graph. 

(Sol.) 

 10→9→6→5→9→8→5→4→8→7 

→4→2→5→3→2→1→3→6→10 

 

 

 

Eg. Find the Euler cycles in the left 

graphs. 

(Sol.) (a) a→b→d→c→b→f→g→j→f 

→e→j→h→c→i→d→e→i→h→a 

(b) a→b→c→b→d→e→h→f→i→j 

→k→i→h→g→f→e→g→d→c→a 

 

 

 

 

 

 

http://faculty.pccu.edu.tw/~meng/Euler2.avi�
http://faculty.pccu.edu.tw/~meng/Euler4.avi�
http://faculty.pccu.edu.tw/~meng/Euler1.avi�


Eg. Consider the adjacent matrix. (Assume that a, b, c, d, e, 

and f represent the vertices). (a) Is the graph connected? (b) Is 

the graph strongly connected? (c) Does the graph have an 

Euler cycle? (d) Is there are 3 paths from a to f? [台科大資工

所] 

 



1-3 Isomorphism of Graphs 

Isomorphic graphs: G1 and G2 are isomorphic if there is a one-to-one, onto function 

f from the vertices of G1 to the vertices of G2, and a one-to-one, onto function g from 

the edges of G1 to the edges of G2, so that an edge e is incident on v and w in G1 if 

and only if the edge g(e) is incident on f(v) and f(w). 

 

Theorem G1 and G2 are isomorphic if they have the same incident matrix. 

Eg. The following graphs G1 and G2 are isomorphic. 

 

And G1 and G2 have the same incident matrix 
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Eg. Determine whether the graphs (1) and (2) are isomorphic? 

 
(Sol.) No. ∵dv

in(a)=2 and dv
out(a)=1 in Graph (1), but dv

in(v)=2 and dv
out(v)=2,  

dv
in(w)=1 and dv

out(w)=1, dv
in(x)=1 and dv

out(x)=1, dv
in(y)=1 and dv

out(y)=2, dv
in(z)=1 

and dv
out(z)=2 in Graph (2), ∴ Graphs (1) and (2) are not isomorphic. 



Eg. Determine whether the graphs G1 and G2 are isomorphic? 

: yes, (v1,v2,v3,v4,v5)→(w3,w1,w4,w2,w5) 

: yes, 

1,v2,v3,v4,v5,v6)→(w3,w6,w2,w5,w1,w4) 

Eg. Determine whether the graphs G1 and G2 are isomorphic? 

(v

 

: no : yes 

: no : yes 

: no : no 



1-4 Planar Graphs 

Planar graph: A Graph G is planar if G can be drawn in the plane without its edges 

crossing 

Eg. Two examples of planar graphs. 

 

Bipartite graph: G[V,E] is bipartite if V1 and V2 such that V1∩V2= , V1∪V2=V, 

and each edge in E is incident on one vertex in V1 and one vertex in V2. 

Eg. Two examples of bipartite graphs. 

 
 

Complete bipartite graph on m and n vertices, Km,n : A simple graph whose vertex 

set is partitioned into set V1 with m vertices and V2 with n vertices in which the edge 

set consists of all edges of the form (v1,v2) with v1V1 and v2V2. 

Eg. An example of complete bipartite graph K2,4 

 

 

Complete graph, Kn: The simple graph with n vertices in which there is an edge 

between every pair of distinct vertices. 

Eg. The complete graph K4 with 4 vertices. 

 



Eg. Two examples of nonplanar graphs K5 and K3,3. 

: K5               : K3,3 

Kuratowski’s Theorem A graph G is planar if and only if G does not contain a 

subgraph homeomorphic to K5 or K3,3. 

 

Eg. Show that the graphs are planar by rewriting 

them so no edges cross. 

(Sol.) (a)→ and (b)→  

 

 

 

 

 

 

Eg. Determine whether each graph is planar? 

(Sol.) 

(a)→ and (b)→ : 

yes, but (c)→ : no 

 



Homeomorphic graphs: Graphs G1 and G2 are homeomorphic if G1 and G2 can be 

reduced to isomorphic graphs by performing a sequence of series reductions. 

Eg. Show that the left graph contains a subgraph which is 

homeomorphic to K3,3. 

 

 

 

 

(Sol.)  

 
 

Eg. Determine whether the left graph is planar? 

(Sol.) yes, it is planar and homeomorphic to the following 

graph. 

 

 

 

 

 

Eg. Determine whether the left graph is planar? 

(Sol.) no 

 

 

 

 

 

Euler’s formula for graphs: f=e-v+2 if G is a connected, planar graph with e 

edges, v vertices, and f faces. 

Eg. A connected, planar graph has 9 vertices with degrees 2, 2, 2, 3, 3, 3, 4, 4, and 

5. How many edges are there? How many faces are there? 

(Sol.) =2+2+2+3+3+3+4+4+5=28=2e, e=14, f=e-v+2=14-9+2=7 faces. 

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1-5 The Shortest Path 

Dijkstra’s shortest algorithm 

 
Eg. Find the shortest path from a to z. 

(Sol.) L(b)=L(c)=L(d)=L(e) 

 =L(f)=L(g)=L(z)=∞ 

 

 

Iteration 0: 

L(a)=0, 

L(b)=min[L(b),L(a)+2] 

=min[∞,0+2]=2, 

L(f)=min[L(f),L(a)+1]=min[∞,0+1]=1, ∴ Select a, f 

Iteration 1: 

L(d)=min[L(d),L(b)+2,L(f)+3,L(e)+4] 

=min[∞,2+2,1+3,∞+4]=4, 

L(g)=min[L(g),L(f)+5,L(e)+7,L(z)+6] 

=min[∞,1+5,∞+7,∞+6]= 6, ∴ Select a, f, d 

 

Iteration 2: 

L(b)=min[L(b), L(d)+2, L(c)+2,L(e)+4] 

=min[2,4+2,∞+2,∞+4]=2, 

L(e)=min[L(e),L(d)+4,L(b)+4,L(g)+7] 

=min[∞,4+4,2+4,6+7]=6, ∴ Discard a, f, d and select a, 

b 

 



Iteration 3: 

L(c)=min[L(c),L(b)+2,L(e)+3,L(z)+1] 

=min[∞,2+2,6+3,∞+1]=4, 

L(e) 

=min[L(e),L(b)+4,L(c)+3,L(d)+4,L(g)+7] 

=min[6,2+4,4+3,4+4,6+7]=6, ∴ Select a, b, c 

Iteration 4: 

L(z)=min[L(z),L(c)+1,L(g)+6]=min[∞,4+1,6+6]=5, 

L(e)=min[L(e),L(c)+3]=min[6,4+3]=6 ∴Select a, b, c, 

z, and the minimum length=5 

 

 

The shortest path from a to z: a→b→c→z and the minimum length=5 



Eg. Find a shortest path from a to z. 

(Sol.)  

 

Iteration 0: 

L(a)=0, 

L(b)=min[L(b),L(a)+4]=min[∞,0+4]=4, 

L(e)=min[L(e),L(a)+1]=min[∞,0+1]=1, 

L(h)=min[L(h),L(a)+6]=min[∞,0+6]=6, 

L(c)=L(d)=L(f)=L(g) =L(i)=L(j)= L(z)=∞, ∴ Select a, e 

Iteration 1: 

L(f) 

=min[L(f),L(b)+4,L(e)+6,L(c)+3,L(i)+2] 

=min[∞,4+4,1+6,∞+3,∞+2]=7, 

L(b)=min[L(b),L(e)+6]=min[4,1+6]=4, 

 L(h)=min[L(h),L(e)+8]=min[6,1+8]=6, 

∴ Discard a, e and select a, b 

Iteration 2: 

L(c)=min[L(c),L(f)+3,L(b)+1,L(d)+6] 

=min[∞,7+3,4+1,∞+6]=5, 

L(f) 

=min[L(f),L(b)+4,L(e)+6,L(c)+3,L(i)+2] 

=min[7,4+4,1+6,5+3,∞+2]=7 

∴ Select a, b, c 

Iteration 3: 

L(f) 

=min[L(f),L(b)+4,L(e)+6,L(c)+3,L(i)+2] 

=min[7,4+4,1+6,7+3,∞+2]=7 

L(d)=min[L(d),L(c)+6,L(g)+3]=min[∞,7+6,∞+3]=13, ∴Discard a, b, c, f and select a, 

e, f 

Iteration 4: 

L(i)=min[L(i),L(f)+2,L(h)+8,L(j)+3] 

=min[∞,7+2,6+8,∞+3]=9, 

L(g)=min[L(g),L(f)+5,L(i)+1,L(j)+2] 

=min[∞,7+5,9+1,∞+2]=10, ∴ Select a, e, 

f, i 



Iteration 5: 

L(g)=min[L(g),L(f)+5,L(i)+1,L(j)+2] 

=min[10,7+5,9+1,∞+2]=10, 

L(j)=min[L(j),L(i)+3,L(g)+2,L(z)+3] 

=min[∞,9+3,10+2,∞+3]=12, ∴ Select a, 

e, f, i, g 

Iteration 6: 

L(z)=min[L(z),L(g)+1,L(d)+1] 

=min[∞,10+1,∞+1]=11, 

L(d)=min[L(d),L(g)+1,L(c)+6] 

=min[∞,10+3,7+6]=13, ∴ a, e, f, i, g, z 

∴ The shortest path is a→e→f→i→g→z and the minimum length=11. 



1-6 Graph Coloring and Chromatic Polynomials 

Proper coloring: If G(V,E) is an undirected graph, a proper coloring of G occurs 

when vertices a and b are colored with distinct colors if {a,b} is an edge in G. 

Chromatic number χ(G): The minimum number of colors needed to properly color 

G. 

Eg. Find χ(G) for the left graphs. [台科

大資工所] 

(Sol.) (a) 2, (b) 3, (c) 4 

 

Eg. χ(Kn)=n and χ(Km,n)=2. 

   

 

Eg. χ(G)=2 for the Herschel graph. 

 

 

 



Eg. χ(G)=3 for the Petersen graph. 

 

 

 

 

 

Eg. Find χ(G) for the left graph. 

(Sol.) χ(G)=3 

 

 

 

 

 

 Eg. Find χ(G) for the left graph. 

(Sol.) χ(G)=4 

 

 

 

 

Eg. Find χ(G) for the left graphs. 

(Sol.) (a)UL: 3, UR: 3, ML: 5, MR: 4, B:2 

 

Chromatic polynomial P(G,λ): Using at most λ colors, the number of ways of 

properly coloring the vertices of G. (λ≧χ(G)) 

Theorem For G consists of n isolated points, P(G,λ)= λn. 

Theorem For G=Kn, (a) P(G,λ)=λ(λ-1)(λ-2)(λ-3)…(λ-n+1) if λ>n. (b) P(G,λ)=0 if 

λ<n. (c) P(G,λ)>0 for the first time when λ=n=χ(G). 

Theorem If G is a path on n vertices, P(G,λ)=λ(λ-1)n-1. 

Eg. For the following graphs, P(G1,λ)=λ(λ-1)3 and P(G2,λ)=λ(λ-1)4. 

 



Theorem If G is made up of components G1, …, Gn, P(G,λ)=P(G1,λ)…P(Gn,λ). 

 

G, Ge, Ge’: If G(V,E) is a connected graph and e=(a,b)E, Ge=G-e is a subgraph of 

G obtained by deleting e from G, Ge’ is a subgraph of G obtained by coalescing the 

vertices a and b. 

Eg. An example of G, Ge, and Ge’. 

 

 

Decomposition Theorem for Chromatic Polynomials If G(V,E) is a connected 

graph and eE, then P(G,λ)=P(Ge,λ)-P(Ge’,λ) or P(Ge,λ)=P(G,λ)+P(Ge’,λ), where 

e=(a,b), Ge=G-e, Ge’ is a subgraph of G obtained by coalescing the vertices a and 

b. 

Eg. Obtain P(G,λ) for G a cycle of length 4. 

(Sol.)P(G,λ)=P(Ge,λ)-P(Ge’,λ) 

=λ(λ-1)4-1-λ(λ-1)(λ-2) 

= λ4-4λ3+6λ2-3λ 

P(G,1)=0, P(G,2)=2>0 χ(G)=2. 

 

Eg. Obtain P(G,λ) for the following leftmost graph. 

(Sol.) P(G,λ)= P(Ge,λ)-P(Ge’,λ) 

=λ(λ-1)5-1-(λ4-4λ3+6λ2-3λ) 

=λ(λ-1)(λ3-4λ2+6λ-4) 

=λ(λ-1)(λ-2)(λ2-2λ+2) 

 

Eg. Obtain P(G,λ) for the following leftmost graph. 

 
(Sol.) P(G,λ)= λ．λ(λ-1)(λ-2)(λ-3)-2λ(λ-1)(λ-2)(λ-3)=λ(λ-1)(λ-2)2(λ-3) 

P(G,1)=P(G,2)=P(G,3)=0, but P(G,4)>0 for λ 4 χ(G)=4. 



Eg. Obtain P(G,λ) for the following leftmost graph. 

(Sol.) P(G,λ)= λ(λ-1)(λ-2)(λ-3) 

+λ(λ-1)(λ-2)=λ(λ-1)(λ-2)2 

 χ(G)=3. 

If 6 colors are available, we have 

P(G,6)=480 ways. 

 

Eg. Obtain P(G,λ) for the following leftmost graph. 

(Sol.) P(G,λ)=λ．λ(λ-1)(λ-2)2-λ(λ-1)(λ-2)2 

=λ(λ-1) 2 (λ-2)2 

 

 

 

Eg. Obtain P(G,λ) for the left graph. 

 

 

 

 

 

(Sol.) Firstly, we calculate 

P(G1,λ)=λ．λ(λ-1)(λ-2)- λ(λ-1)(λ-2) 

=λ(λ-1)2(λ-2) 

 

 

And then we have 

P(G,λ)= λ．P(G1,λ)-2P(G1,λ) 

=(λ-2)P(G1,λ)=λ(λ-1)2(λ-2) 2 

 

 

 

 

 

 

 

 

 

 



Eg. Obtain P(G,λ) for the left graph. 

(Sol.) See the following figure. 

 
P(G,λ)= λ．(λ4-4λ3+6λ2-3λ)-2(λ4-4λ3+6λ2-3λ)-2λ(λ-1)(λ-2)2 

=λ(λ-1)(λ3-7λ2+17λ-14)=λ(λ-1)(λ-2)(λ2-5λ+7) 



Theorem Let G(V,E) be an undirected graph with subgraphs G1 and G2. If 

G1∪G2= G and G1∩G2=Kn, then 

P(G,λ)=P(G1,λ)P(G2,λ)/λ(λ-1)(λ-2)(λ-3)…(λ-n+1). 

G’ connects two 

boundary. 

Application of coloring

ountries with adjoining 

oundaries have the same color. 

(Sol.) 1. Transform the original map into the dual graph: 

 

Dual graph: For the dual graph G’ of the original graph G, its vertices consists of one 

point in each faces of G, including the unbounded face. An edge in 

vertices if the corresponding faces in G have the common 

 dual graph: Coloring the map 

Eg. Find the dual graph of the left map and color the map 

using 4 colors such that no c

b

 

  

2. Color the dual graph: A, D: red, B, E, G: green, C, F: blue, H: brown 

 

3. Color the original map: 

 


